首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3034篇
  免费   303篇
  国内免费   343篇
  2023年   65篇
  2022年   65篇
  2021年   120篇
  2020年   108篇
  2019年   100篇
  2018年   110篇
  2017年   82篇
  2016年   113篇
  2015年   115篇
  2014年   189篇
  2013年   271篇
  2012年   173篇
  2011年   159篇
  2010年   138篇
  2009年   145篇
  2008年   148篇
  2007年   156篇
  2006年   142篇
  2005年   129篇
  2004年   113篇
  2003年   104篇
  2002年   98篇
  2001年   72篇
  2000年   65篇
  1999年   60篇
  1998年   55篇
  1997年   42篇
  1996年   55篇
  1995年   42篇
  1994年   55篇
  1993年   49篇
  1992年   41篇
  1991年   32篇
  1990年   26篇
  1989年   40篇
  1988年   18篇
  1987年   20篇
  1986年   14篇
  1985年   21篇
  1984年   21篇
  1983年   11篇
  1982年   10篇
  1981年   14篇
  1980年   16篇
  1979年   14篇
  1978年   9篇
  1977年   11篇
  1976年   4篇
  1975年   4篇
  1971年   4篇
排序方式: 共有3680条查询结果,搜索用时 15 毫秒
1.
Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising technique for digital diagnosis of cancer.  相似文献   
2.
3.
Abstract. Due to the complexity of coastal barrier vegetation, it is useful to apply a functional-type approach to assess the response of barrier island vegetation to climate change. In this paper, a simple clustering analysis is applied to a group of 19 plant associations, based on six plant attributes and six environmental constraints. This analysis results in the suggestion that the main division of the vegetation types at Virginia Coast Reserve is between herbaceous and woody types, which differs from the existing classification which recognizes three groups: xeric-mesic herbaceous, woody and hydric-halophytic herbaceous. Considerations about grouping plant functional types are also addressed in this paper. At a global scale, inclusion of barrier plant functional types may not be so important for the climate-change response of vegetation, but it may be necessary to consider these important systems for spatially explicit modelling of landscape responses.  相似文献   
4.
5.
R. P. Novitzki 《Plant Ecology》1995,118(1-2):171-184
The U.S. Environmental Protection Agency (EPA) initiated the Environmental Monitoring and Assessment Program (EMAP) in 1988. The wetland component (EMAP-Wetlands) is designed to provide quantitative assessments of the current status and long-term trends in the ecological condition of wetland resources. EMAP-Wetlands will develop a wetland monitoring network and will identify and evaluate indicators that describe and quantify wetland condition. The EMAP-Wetlands network will represent a probability sample of the total wetland resource. The EMAP sample is based on a triangular grid of approximately 12,600 sample points in the conterminous U.S. The triangular grid adequately samples wetland resources that are common and uniformly distributed in a region, such as the prairie pothole wetlands of the Midwest. However, the design is flexible and allows the base grid density to be increased to adequately sample wetland resources, such as the coastal wetlands of the Gulf of Mexico, which are distributed linearly along the coast. The Gulf sample network required a 49-fold increase in base grid density. EMAP-Wetlands aggregates the 56 U.S. Fish and Wildlife Service's (FWS) National Wetland Inventory (NWI) categories (Cowardin et al. 1979) into 12 functionally similar groups (Leibowitz et al. 1991). Both the EMAP sample design and aggregated wetland classes are suitable for global inventory and assessment of wetlands.The research described in this report has been funded by the U.S. Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, OR, through contract No. 68-C8-0006 to Man Tech Environmental Technology, Inc. This paper has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
6.
The ability of PVM, PVY and PVX viruses and their progeny to distribute themselves and accumulate in primary infected potato plants by mono‐ and mixed infections is analysed. It is shown, that the transport and accumulation of virus in inoculated potato plants depends on variety resistance, combination of viruses and sequence of their application.  相似文献   
7.
In this article a test for the comparison of K groups of independent profiles is suggested. It is based on rank tests, in which the criterion is obtained by using a suitably chosen ordinal classification function. This function represents a specific view on the profiles. The test, which is easy to use, can be regarded as a generalisation of other well known tests and can be applied within a variety of situations. The relationships to other procedures for the analysis of profiles are described. Some properties are discussed.  相似文献   
8.
Using the land‐bound vertebrates on the marine islands as model organisms, two metrics are presented that permit quantitative and succinct synopses of the ‘evolutionary maturity’ of the hosted faunal assemblages. In turn, these reflect the geo‐physical settings and geological developments of the substrates. The assemblage lineage‐taxonomy spectrum (ALTS) is based on the constituent lineages’ taxonomic distinctiveness and diversity. Individual lineages within assemblages can in most cases be assigned to one of six categories, LT1?LT6: LT1 is a non‐endemic taxon, whereas LT6 comprises multiple endemic genera from a family that arose elsewhere. If required, the scheme can be expanded: LT9 is an endemic order. The data can then be combined to provide an assemblage spectrum, for example, 00:08:38:30:08:15[ 13 ]. Here, the first six values denote the number of lineages assigned to each category expressed as percentages of the overall total, with the sum of the processed lineages listed as the seventh (in brackets and bold). The ALTS metric highlights efficiently the key features of a marine island's biological assemblage. Notably, the contrast between spectra for suites on geologically and geo‐physically varied island types can be striking, for instance the squamate suite on the young, proximate orogenic margin island of Taiwan is coded 78:16:05:00:00:00[ 37 ] whereas the one on the distantly located, Late Eocene composite terrane island of New Caledonia is 00:11:00:11:33:44[ 9 ]. To overcome the subjectivity that is inherent in assigning supraspecific ranks, an alternative assemblage lineage‐age spectrum (ALAS) is also introduced that makes use of the binary logarithm values of the colonization times of the island lineages (0–2, 2–4, … , 32–64, >64 Ma). It is represented using a seven‐plus‐two‐number code, for instance Madagascar's squamates are 00:06:00:00:19:62:12[ 19 ( 16 )]; most colonizations took place in the Palaeogene (66–23 Ma); there are 19 lineages, but only 16 are presently age‐dated. In addition to marine‐island biogeography studies, the ALTS–ALAS spectrum approach is potentially useful for encapsulating biotas in other sorts of insular setting (e.g. lakes, mountain tops), and for evaluating palaeogeographical models. Furthermore, it may help emphasize the conservation value of an island's faunal assemblage.  相似文献   
9.
Typology of oligotrophic streams of the Ardenne (Belgium) by multivariate analysis of benthic diatoms records.During three years, samples of water and algae has been taken in 72 stations distributed on the river system of the northern part of the Ardennes. 357 taxa of diatoms have been identified. Principal component analysis and cluster analysis, applied to diatoms counts, allowed to classify the records in a table comparable to phytosociological tables. A continuum in the data is an indication of the progressive modification of the communities according to the physico-chemical characteristics of the water. Ten diatoms assemblages have been described and this typology has been compared to some algal associations defined in the literature. In natural environments, these 10 assemblages are strictly correlated with the nature of the geological substrate and the physico-chemical characteristics of the water. The sensibility of the oligotrophic streams is revealed by the speedy changes in the communities after following a small modification of the environmental factors (seasonal variations or light eutrophication).
Typologie des rivières oligotrophes du massif Ardennais (Belgique) par l'analyse multivariée de relevés de diatomées benthiques
  相似文献   
10.
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine‐driven climate change. Location Middle to Late Miocene in the south‐east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south‐east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south‐western African coast are the disappearance of Podocarpus‐dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi‐arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre‐date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine‐driven climate change in south‐western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号